## (Closed book, no models)

Name
Key
(Please print) Last First Middle initial
Last 4 digits of Students ID Number: $\qquad$
TA $\qquad$

1) This exam consists of 5 pages (including this page) and 6 questions.
2) Do not turn the pages until 3:10 p.m.
3) Turn in your exam to one of the teaching staff by $4: 00$ p.m.
4) Put your 4 digits ID in the upper right corner of the next 4 pages. Be sure you have pages 2-5.
5) Please answer clearly in the spaces provided. The back of the page is for scratch work only.
6) Any request for re-grading should be done according to the TA's instruction.

|  | $\begin{aligned} & 1 \\ & \mathrm{H} \end{aligned}$ |  |  |  |  |  |  | $\begin{aligned} & 2 \\ & \mathrm{He} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | $\begin{aligned} & \hline 3 \\ & \mathrm{Li} \end{aligned}$ | $\begin{aligned} & \hline 4 \\ & \mathrm{Be} \end{aligned}$ | $\begin{aligned} & \hline 5 \\ & \mathrm{~B} \end{aligned}$ | $\begin{aligned} & 6 \\ & C \end{aligned}$ | $\begin{gathered} \hline 7 \\ \mathrm{~N} \end{gathered}$ | $\begin{aligned} & 8 \\ & \mathrm{O} \end{aligned}$ | $\begin{aligned} & \hline 9 \\ & F \end{aligned}$ | 10 Ne |
| 3 | $\begin{aligned} & 11 \\ & \mathrm{Na} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 12 \\ & \mathrm{Mg} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 13 \\ & \mathrm{Al} \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 14 \\ & \mathrm{Si} \\ & \hline \end{aligned}$ | $\begin{aligned} & 15 \\ & \mathrm{P} \\ & \hline \end{aligned}$ | $\begin{aligned} & 16 \\ & \mathrm{~S} \\ & \hline \end{aligned}$ | 17 Cl | $\begin{aligned} & 18 \\ & \mathrm{Ar} \\ & \hline \end{aligned}$ |
| 4 | $\begin{aligned} & 19 \\ & \mathrm{~K} \end{aligned}$ | $\begin{aligned} & 20 \\ & \mathrm{Ca} \end{aligned}$ | $\begin{array}{r} 31 \\ \mathrm{Ga} \end{array}$ | $\begin{aligned} & \hline 32 \\ & \mathrm{Ge} \end{aligned}$ | 33 As | $\begin{aligned} & \hline 34 \\ & \mathrm{Se} \end{aligned}$ | $\begin{aligned} & \hline 35 \\ & \mathrm{Br} \end{aligned}$ | $\begin{aligned} & 35 \\ & \mathrm{Kr} \end{aligned}$ |
| 5 | $\begin{aligned} & \hline 37 \\ & \mathrm{Rb} \\ & \hline \end{aligned}$ | $\begin{aligned} & 38 \\ & \mathrm{Sr} \end{aligned}$ | $\begin{aligned} & \hline 49 \\ & \text { In } \end{aligned}$ | 50 Sn | 51 | 52 | I ${ }^{\text {I }}$ | 53 Xe |


| Page | Score |
| :--- | :--- |
| 2 | $/ 24$ |
| 3 | $/ 32$ |
| 4 | $/ 34$ |
| 5 | $/ 10$ |
| Total | $/ 100$ |

$\qquad$

1. (8pts) Name the following in IUPAC:
(a)
 $1 \mathrm{pt} 1 \mathrm{pt} \quad 1 \mathrm{pt} \quad 1 \mathrm{pt} \quad 1 \mathrm{pt}$
3-(3-ethyl-5-methylphenyl)-1-propanol 3-(3-ethyl-5-methylphenyl)-1-propanol 3-(3-ethyl-5-methylphenyl)propan-1-ol
(b)


1 pt 1 pt 1 pt
5-bromo-2-ethylphenol
2. (a) 4 pts. Rank the following compounds in order of decreasing $\mathbf{S}_{\mathbf{N}} \mathbf{1}$ reactivity.


A


B


C
$C>A>B>D$
least reactive
(b) 4 pts. Rank the following ions in order of increasing stability.

B

C

D
$D<B<C<A$
least stable
most stable
most reactive

A

D
(c) 4 pts. Rank the following compounds in order of decreasing reactivity toward $\mathrm{Br}_{2}, \mathrm{Fe}$.

A

B

C

D
D $>\mathrm{A}>\mathrm{C}>\mathrm{B}$
most reactive least reactive
(d) 4 pts. Circle ONLY the aromatic compounds (Wrong answer cancels right answer).






$\qquad$
3. (32pts) Please give the expected major product(s) for the following reactions. Unless mentioned otherwise, you can assume that all reagents are present in one mole. If there is no reaction, please write NR. Show stereochemistry where necessary.
(a)

$\square$
(b)

(c)


(d)



(e)


(f)



(g)

(h)

$\Delta$

$\qquad$
4. (18 pts) Write the product of the following reaction, also write a complete, step-wise, detailed mechanism for the reaction.

5.Show how you would carry out the following transformations in high yield.
(a) (8 pts)


3) $\mathrm{H}_{2} \mathrm{O}$, or $\mathrm{H}_{3} \mathrm{O}^{+} \quad 2$ pts
(b) (12pts)


2 pts/ ea step
3) $\mathrm{Zn}(\mathrm{Hg}), \mathrm{HCl}$
4) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{3}$
5) $\mathrm{Cl}_{2}, \mathrm{AlCl}_{3}$
6) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$, heat
$\qquad$
6. (10 pts.) Using the following spectra, draw a possible structure for $\mathbf{C}_{7} \mathbf{H}_{7} \mathbf{B r O}$.




