Functional Groups

A functional group is a bond or several bonds in an organic molecule that have certain properties and reactions that are consistent in all molecules containing those sets of bonds

- Functional groups often involve heteroatoms or multiple bonds or both.
- Compounds with multiple functional groups will be classified (and react) as all appropriate functional groups.
 - CH3CH=CHCH2CH2OH is an alkene and an alcohol
 - o CH₃CHBrCH2CHO is an aldehyde and an alkyl halide
- Single functional groups are not broken apart into sub-groups
 - –COOH is a carboxylic acid NOT a ketone and an alcohol
 - HCOOR is an ester NOT an aldehyde and an ether.
- Functional groups have a strict hierarchy in IUPAC nomenclature and the ending of the name often depends on the highest priority functional group, but functional groups and substituents are NOT the same thing.
 - Functional groups have distinct reactions, bonds, and properties
 - E.g. an alcohol, an alkene, a nitrile.
 - Substituents are a way of simplifying molecules for naming.
 - E.g. a methyl group, an ethyl group, an isopropyl group

NOTE:

Whether alkane is a functional group often depends on whom you ask. Alkanes are often considered to be the basic organic structure and are thus not included as a functional group, but as a skeleton structure common to all molecules. Sometimes alkanes are considered to be a functional group if there is no other functional group in the molecule (e.g. 2,2,3,3-tetramethylbutane is a branched alkane).

Hydrocarbons			
Just C and H atoms			
Alkane	-C-C-	All C and H All single bonds Unreactive, except with F ₂ , Cl ₂ , Br ₂ , and O ₂ Insoluble in water, low boiling points General alkane abbreviated as R	
Alkene	c = c	All C and H At least one C=C double bond Undergo electophilic addition reactions, hydrogenation, and other reactions at the pi bond. Insoluble in water, low boiling points	
Alkyne	_C≡C_	All C and H At least one C-C triple bond Undergo electophilic addition reactions, hydrogenation, and other reactions at the pi bond. Insoluble in water, low boiling points	
Aromatic (Arene)		C and H (possibly N, O, or S) Conjugated, cyclic, planer systems with 4n+2 pi electrons. Undergo electrophilic aromatic substitution reactions. General aromatic abbreviated as Ar	

Carbonyls				
Class II: attached to C/H				
Aldehydes (Class II)	O R H	C and O double bond with an H on the same carbon. Polar bonds give moderate bp Nucleophilic Acyl Addition Reactions Redox reactions pKa of alpha H 18-20 (enolate reactions)		
Ketones (Class II)	O R R'	C and O double bond with two alkyl groups Polar bonds give moderate bp Nucleophilic Acyl Addition Reactions Reduction reactions pKa of alpha H 19-21 (enolate reactions)		

Heteroatoms					
Contain atoms other than C and H					
Haloalkanes (Alkyl Halides)	R-F R-Cl R-Br R-I	Contain F, Cl, Br, or I General halogen abbreviated as X Low water solubility Bp increases with size of halogen. S _N 2, S _N 1/E ₁ , and E ₂ reactions Good leaving groups			
Alcohols	R-OH	Contain O High water solubility and boiling point due to hydrogen bonds S _N 2, S _N 1/E ₁ , and E ₂ reactions Acid/Base reactions Oxidation/Reduction reactions Moderate nucleophiles and poor leaving groups			
Ethers	R-OR'	Contain O Mod. water solubility and boiling point due to polar bonds Can react with strong acids to give S_N2 , S_N1/E_1 , and E_2 reactions			
Amines	primary amine R-NH secondary amine R-NH amine R' tertiary amine R-NH amine R	Moderate to high water solubility and bp due to hydrogen bonds Good bases and nucleophiles poor leaving groups.			
Thiols	R-S-H	Similar to alcohols. S is very nucleophilic			
Thioethers	R-S-R'	Similar to ethers, S is very nucleophilic and can expand its octet.			

Carbonyls				
Class I: Attached to a heteroatom (leaving group)				
Carboxylic Acids (Class I)	O R OH	C and O double bond with an OH on the same carbon. Acidic Hydrogen pka of OH 4-5 Hydrogen bonds give very high bp. Nucleophilic Acyl Substitution Reactions Reduction reactions		
Carbonyl Halides (Class I)	R CI	C and O double bond with a halogen on the same carbon. Very reactive with water Nucleophilic Acyl Substitution Reactions Reduction reactions		
Anhydrides (Class I)	O O R O R'	C and O double bond with an acid ester on the same carbon. Moderately reactive with water Nucleophilic Acyl Substitution Reactions Reduction reactions		
Esters (Class I)	O R OR'	C and O double bond with an ether on the same carbon. Nucleophilic Acyl Substitution Reactions Reduction reactions pKa of alpha hydrogens ~25 so can do enolate reactions		
Amides (Class I)	$ \begin{array}{c cccc} & H & R & R \\ & N-H & N-H & N-R \\ & N-H & N-R & N-R \\ \end{array} $	C and O double bond with an amine on the same carbon. Lots of double bond character in the C-N bond due to resonance. N-H are moderately acidic and can hydrogen bond. Nucleophilic Acyl Substitution Reactions Reduction reactions		
Nitriles (Class I)	R−C≣N	C and N triple bond. Same oxidation state as Class I carbonyls. Hydrolizes to a carboxylic acid Reduction reactions		

Advanced		
Imines	CN	C/N double bond. Easily converted to carbonyl in the presence of water.
Enols	OH C C	Formation is unfavored and the diol will usually revert to the carbonyl unless the alkene forms an aromatic ring
Geminal Diol	HO OH	Not isolable. Formation is unfavored except with formaldehyde and electron poor carbonyls. Formation catalyzed by acid or base
Hemiacetals	HO OR	Easily reversed to carbonyl, except with cyclic hemiacetals. Formation catalyzed by acid or base.
Acetals	RO OR	Formation catalyzed by acid only. Stable and isolable except in the presence of acid.