Introduction to Spectroscopy IV: Interpreting ¹³C NMR

Basics:

¹²C has an even number of protons and an even number of neutrons so is not observable in NMR spectroscopy. However ¹³C has an odd number of neutrons and an odd mass number so is a spin +1/2 nucleus that is observable by NMR. However, ¹³C is only about 1.1% of naturally abundant carbon so the signal from ¹³C NMR is much weaker than that of ¹H NMR. The physics behind ¹³C NMR is the same as that of ¹H NMR, but due in part to the much lower abundance of carbon, and its lower sensitivity on a per nucleus basis, how we go about analyzing ¹³C NMR is a bit different.

Chemical Shift:

Chemical shift for ¹³C NMR works under the same principles as ¹H NMR. The more deshielded a nucleus is the more left (downfield) it shifts. ¹³C has a much larger range than ¹H does and chemical shifts for ¹³C range from about 0-200 ppm. This larger range actually helps analysis as similar chemical environments are spread out over the range so it's uncommon for ¹³C NMR signals to be at the same chemical shift unless the carbons are chemically equivalent. The values in table 10.6 in Vollhardt+Schore should be remembered.

- A general rule of thumb for ¹³C NMR is that the ¹³C chemical shift is 20x that of the ¹H NMR chemical shift. This is not absolutely true, but is close enough to get into the correct zone.
- CH₃ are shielded (right/upfield) compared to CH₂, which are shielded compared to CH.
- sp³ carbons are shielded and typically below 90 ppm,
- sp² carbons are deshielded and typically above 100 ppm.

Coupling/Decoupling:

Since the relative abundance of ¹³C is so small (~1/100 carbons) it's extremely unlikely that two ¹³C will be adjacent to each other and show coupling as we see it in ¹H NMR. The chances of two coupled ¹³C are approximately 1 in 10,000 so we don't use coupling to determine neighbors.

However, the H attached to a ¹³C do couple to the ¹³C nucleus and affect its resonance frequency. A quaternary C will show up as a singlet, a CH will show up as a doublet, a CH₂ as a triplet, and a CH₃ as a quartet if we treat carbon NMR the same as proton NMR. This coupling is inconvenient as it lowers the already weak ¹³C signal by splitting it into several peaks in a multiplet. Typically carbon NMR is much less sensitive than proton NMR, so when the peak is spread out into a multiplet by coupling, it gets even harder to separate from background noise.

In order to make the signals stronger ¹³C NMR spectra are decoupled. The radio frequencies are manipulated in a way to prevent the protons from coupling to the attached carbons, so all ¹³C NMR signals appear as singlets regardless of the number of attached protons. This does result in the loss of some information about number of protons, but allows all ¹³C NMR signals to be visible in a much shorter period of time.

NOTE: To get an interpretable ¹H NMR on a 20 mg sample takes from 30 seconds to 2 minutes in a 400 MHz FT-NMR spectrophotometer (1-16 scans). To get an interpretable ¹³C NMR spectrum on the same sample with the same spectrophotometer will take 20 minutes to an hour (256-1024 scans) when decoupled and even longer when coupled.

Integration:

Integration does not effectively show the relative number of nuclei in ¹³C NMR as it does in ¹H NMR. The peak area of a single CH₃ nucleus is somewhat larger than that of a single CH₂ or CH nucleus, and quaternary carbons have very small peak areas. The reasons have to do with relaxation effects on the excited states by attached protons and are beyond the scope of this class.

All but two of these signals represent a one carbon singlet and they vary greatly in height. The two CH at 129 and 135 ppm both represent two equivalent carbons and are corresponingly taller than the other $CH/CH_2/CH_3$ signals. Symmetrical carbons do tend to show up as taller peaks and can be picked out with practice. The two quaternary carbons at 208 ppm and 144 ppm are significantly shorter than the CH/CH₂/CH₃ signals indicating that they are probably quaternary.

APT/DEPT:

There are 3 possible ways to determine the number of protons bonded to a particular carbon: coupled spectra, APT, and DEPT. While the physics behind the experiments is beyond the scope of this course, the interpretation of the spectra is straight forward if one knows which kind of spectrum one is looking at.

Coupled spectra:

Coupled spectra *don't* decouple the ¹H from the ¹³C. They show C as singlets, CH as doublets, CH_2 as triplets and CH_3 as quartets. While simple to do, they are not particularly efficient and are not common.

Attached Proton Test (APT):

APT spectra usually consist of two aligned scales with ¹³C NMR data. One is the normal ¹³C NMR spectrum, the other shows peaks pointing both up and down. The upward pointing peaks will have odd numbers of H (CH₃ and CH), the downward pointing peaks will have even numbers of attached H (CH₂ and C). Occasionally spectra are phased with the reverse direction odd numbers of H downwards and even numbers of H upwards. When in doubt, look for a signal you're sure of and determine which way it's going, the rest will follow.

Distortionless Enhanced Polarization Transfer (DEPT):

DEPT experiments show either 3 or 4 scales. The classic experiment shows the normal ¹³C NMR spectrum, then a DEPT-90 which shows only the CH peaks, then a DEPT-135 which shows the CH and CH₃ peaks as upwards and the CH₂ peaks as downwards (no signals for C). Some printouts will display the normal spectrum, then add and subtract the normal, DEPT-90 and DEPT-135 spectra to show a scale with just CH₃, as scale with just CH₂ and a scale with just CH.

Key Points:

- Carbon NMR only detects ¹³C (approximately 1% natural abundance).
- ¹³C chemical shift is approximately 20x the ¹H chemical shift.
- ¹³C NMR is decoupled so all peaks appear as singlets.
- Peak areas are not an exact ratio of number of equivalent carbons.
- APT and DEPT can differentiate between C, CH, CH₂ and CH₃ signals.